Cocaine and alcohol interactions in the rat: contribution of cocaine metabolites to the pharmacological effects
Pan WJ, Hedaya MA
Pharmacology/Toxicology Graduate Program,
Department of Pharmaceutical Sciences,
College of Pharmacy,
Washington State University,
Pullman, Washington 99164-6510, USA.
J Pharm Sci 1999 Apr; 88(4):468-76


The pharmacokinetics and pharmacodynamics of cocaine and its three metabolites, benzoylecgonine, norcocaine, and cocaethylene, were investigated in awake, freely moving rats. This work was performed to examine the effect of alcohol coadministration on the metabolic profile of cocaine and to determine the contribution of cocaine metabolites to the pharmacological responses observed after cocaine administration. The plasma and brain extracellular fluid concentration-time profiles were characterized after intravenous (iv) administration of cocaine and the three metabolites in a crossover experimental design. The neurochemical response, measured as the change in dopamine concentration in the nucleus accumbens, and the cardiovascular responses, measured as the change in the mean arterial blood pressure, heart rate, and QRS interval, were monitored simultaneously. Cocaethylene had the highest brain-to-plasma distribution ratio, followed by cocaine, norcocaine, and benzoylecgonine. The estimated total body clearances for cocaine, benzoylecgonine, norcocaine, and cocaethylene were 140 +/- 19, 14.7 +/- 1.2, 130 +/- 19, and 111 +/- 16 mL/min/kg, respectively. Alcohol coadministration increased the formation of norcocaine, decreased the formation of benzoylecgonine, and resulted in the formation of the pharmacologically active metabolite cocaethylene. When cocaine was administered with alcohol, 12.9 +/- 3.1% to 15.3 +/- 2.9% of the cocaine dose was converted to cocaethylene. Benzoylecgonine did not have any central nervous system or cardiovascular activities after iv administration. Compared with cocaine, norcocaine and cocaethylene had more potent and prolonged effects on the neurochemical, heart rate, and QRS interval responses, and were equipotent in increasing the mean arterial blood pressure. These results indicate that changes in the cocaine metabolic profile and the formation of the pharmacologically active metabolite cocaethylene are, at least partially, responsible for the more intense and longer lasting effects reported after using this drug in combination with alcohol.

Cocaine hotspots
Cocaine withdrawal
The coke-craving brain
The neural basis of addiction
Freebasing flies go hyperkinetic
Cocaethylene and cocaine dependence

01 02 03 04 05 06 07 08 09 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24

BLTC Research
Wirehead Hedonism
Utopian Pharmacology
The Hedonistic Imperative
When Is It Best To Take Crack Cocaine?

swan image
The Good Drug Guide
The Responsible Parent's Guide
To Healthy Mood Boosters For All The Family